
Seamless Texturing of Archaeological Data

Michael Birsak Przemyslaw Musialski Murat Arikan Michael Wimmer

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

e-mail: {birsak,pm,arikan,wimmer}@cg.tuwien.ac.at

Abstract—In this paper we propose a framework for out-of-
core real-time rendering of high-quality textured archaeological
data-sets. Our input is a triangle mesh and a set of calibrated and
registered photographs. Our system performs the actual mapping
of the photos to the mesh for high-quality reconstructions,
which is a task referred to as the labeling problem. Another
problem of such mappings are seams that arise on junctions
between triangles that contain information from different photos.
These are are approached with blending methods, referred to as
leveling. We address both problems and introduce a novel labeling
approach based on occlusion detection using depth maps that
prevents texturing of parts of the model with images that do not
contain the expected region. Moreover, we propose an improved
approach for seam-leveling that penalizes too large values and
helps to keep the resulting colors in a valid range. For high-
performance visualization of the 3D models with a huge amount
of textures, we make use of virtual texturing, and present an
application that generates the needed texture atlas in significantly
less time than existing scripts. Finally, we show how the mentioned
components are integrated into a visualization application for
digitized archaeological site.

I. INTRODUCTION

Cultural heritage is important to preserve tangible items
as well as intangible attributes for future generations. Tangible
items (e.g. buildings, monuments) are often too big to be saved
in a secure environment like a display case in a museum in
order to protect them from atmospheric conditions and natural
breakup. Due to the immense computational power of today’s
hardware, those items can be preserved in a digital manner.
For example, laser scanners are used to produce geometric 3D
point clouds, often extended with more interesting information,
like the surface color, that can be used for projective texture
mapping. Often laser scanners allow the connection with a
digital single lens reflex camera (DSLR) mounted on top in
order to acquire color information from the same position.

During the registration process, the position and the orien-
tation of the camera relative to the coordinate system of the
laser scanner is registered. Then, provided that the internal
parameters of the camera (sensor dimensions, focal length,
distortion) are known, an accurate back-projection of the
images onto the scanned geometry is possible. For color
mapping for high-quality reconstructions of parts of the model,
the registered camera is used for taking photos at every scan
position in conjunction with scanning of the geometry. The
point cloud alone is not suited for mapping of the photos onto
the model in a continuous way, thus often the point cloud
is converted into a triangle mesh which in turn can be used
for piecewise continuous texture mapping. Nonetheless, this
process is not trivial, since due to the size or shape of the
scanned scene, a single photo is usually insufficient to cover it

entirely. So when speaking about meshes, and assuming that
every triangle of the mesh should receive its color information
from exactly one photo, there have to be edges inside the model
where regions, textured by different photos, adjoin to each
other. Those edges express themselves as visible artifacts and
are also referred to as seams.

The whole digitizing process leads to four major problems.
The first problem is the finding of an optimal mapping of
photos onto the mesh, so that as few seams as possible remain
while at the same time choosing a high-quality photo for
each triangle. The second major problem is the automatic
adjustment in terms of color of the remaining seams. The third
problem is the manual editing of the photos, which is often
needed to handle remaining artifacts like highlights. Finally,
the fourth problem is the high-performance visualization of a
3D model with a huge amount of textures.

II. RELATED WORK

Our work is related to the three different fields of research
labeling, leveling and virtual texturing. In the following we
want to give an overview of some existing techniques con-
cerning these fields.

Labeling. In the labeling procedures similar to our
approach, every face Fi of the model gets a label P j that
corresponds to a particular photo. Assuming that there are
K faces F1 to FK and N photos P1 to PN , a labeling is a
mapping from the set of faces {F1, ...,FK} onto the set of
photos {P1, ...,PN}. A label Pi for a face Fj means that the
face Fj is textured by the photo Pi.

A simple method to find a valid mapping is also referred
to as the best fragment approach [1]. The principle of the
best fragment approach is the calculation of weights for every
photo-triangle-pair such that every triangle is textured by the
photo corresponding to smallest weight. One possibility to
calculate a weight for a photo-triangle-pair is to take the sine
of the angle between the normal vector of the face and the
viewing vector [1]. For better results, a more sophisticated
method where the labeling problem is considered as a Markov
Random Field (MRF) energy optimization [2] was proposed
by Lempitsky and Ivanov [1]. For the minimization process
they use α-expansion Graph Cuts [3], [4].

Abdelhafiz [5] follows a simpler approach for the labeling.
His work is based on the calculation of the areas of the
projected faces. Also the approach of Gal et al. [6] is similar
the work of Lempitsky and Ivanov [1], but in contrast they use
photo-vector-tuples as labels. Musialski et al. [7] presented a
method for the generation of high-quality approximated façade

Leveled Model

Preprocessing Labeling Leveling Rendering

Triangle MeshPoint Cloud Labeled Model

Fig. 1: The pipeline of our method. While our framework handles the entire pipeline, the main contribution of this paper are the
two stages in the middle: leveling and labeling.

ortho-textures based on a set of perspective photos, where they
use a simpler labeling term. For leveling they utilize a GPU-
poisson solver [8]. Pintus et al. [9] directly work on (extremely
dense) point clouds. The result is an assignment of colors to
the points. The origin of the color information is a set of high-
resolution photos. In contrast to our method where every basic
element (in our case triangles) gets its color information from
a single photo, they assign colors to points, that are weighted
sums of several pixels.

Leveling. In the leveling stage, one tries to get rid of the
visible artifacts in the model where regions that are textured by
different photos adjoin each other. These seams arise because
of the different lighting situations during the exposure of the
photos.

There is much literature available concerning leveling.
However, most of it does not directly deal with leveling on
meshes, but only covers approaches used for stitching together
two or more planar photos to get a panoramic image. Some
proposed approaches [10]–[12], which are also referred to as
optimal seam methods, search for a curve in the overlapping
region of two photos, and use the curve as the border between
the two photos. Other approaches [13] blend between the
images under consideration to get a smoother intersection. A
better idea than blending or searching for an optimal seam in
order to stitch two images together is to keep the variation
of the images, namely their gradients, while bringing their
intensities onto the same level [8]. Lempitsky and Ivanov [1]
adapted the findings of Pérez et al. [8] to the problem of seam
leveling on meshes. Instead of solving a Poisson equation, they
approximate the solution by solving a least squares problem.
A disadvantage of their method is a missing mechanism to
keep the calculated color values in the valid range.

Our approach is based on the method of Lempitsky and
Ivanov [1]. In contrast, we introduce a further term into the
least squares problem that pays attention on the final color
values so that they reside in a valid range.

III. APPROACH

Our approach is a full workflow from the raw data that
is gathered in the digitization process of an archaeological
monument to a fully textured model free of visual artifacts. In
the following we want first to give an overview of our method.
Afterwards, we will explain the main parts in detail.

A. Overview

In Figure 1, an outline of our approach is shown. The first
step is a preprocessing step where the point cloud of the model

is transformed into a manifold triangle mesh. Furthermore,
the photographs that were taken from the monument are
undistorted using the documented intrinsic parameters of the
camera. The goal of the labeling stage is to find a good
mapping of the set of faces onto the set of photos, such
that the number of seams is minimized while at the same
time choosing a high-quality photo for every face. We use
an MRF energy optimization approach to do the labeling and
introduce occlusion detection using depth maps to prevent
usage of image material showing parts of an occluder. In the
leveling stage, a piecewise continuous function is calculated
for the three color channels R, G and B and added to the
input function given by the labeling result. The outcome is
then a smooth textured model without discontinuities. The last
stage in our approach is the Rendering stage, where we use
virtual texturing for high-performance visualization of models
containing a great amount of texture data.

B. Preprocessing

Laser scanners usually do not directly deliver triangle
meshes but only point clouds. Our system only works on trian-
gle meshes, since we want to calculate a continuous mapping
of the photos onto the model. The point cloud has therefore to
be transformed into a triangle mesh. The models shown in this
paper were either triangulated using the approach of Bolitho
et al. [14] (Centcelles cupola) or using the wrap-function of
the commercially available tool Geomagic (Hanghaus 2).

Another important preprocessing step is the undistortion of
the photographs. Certainly, it would be possible to directly use
the original photos and account for the distortion at runtime.
However, if the distortion information is just applied to the
projected vertices, and the interpolation between them is done
linearly, one would only account for the linear distortion. We
therefore undistort the photos prior to the labeling stage and
then only use the undistorted photos.

C. Labeling

Our approach for labeling takes a manifold triangle mesh
and a set of registered photos as input and can be formulated
as follows. Let {F1, ...,FK} be the set of faces in a model
and let {P1, ...,PN} be the set of registered photos that are
used for texturing of the model. The resulting labeling, which
is also referred to as a texture mosaic, is then defined by a
labeling vector M = (m1,m2, ...,mK), where m1,m2, ...,mK ∈
{0,1, ...,N}. An element mi in M states that the face Fi is
textured by the photo Pmi .

n
v

camera taking photo Pj

face Fi

ad

Fig. 2: A face Fi of the model with its normal vector n and
view vector v to the camera taking the photo P j. The cost
value w j

i is calculated by λ · sin2
α+(1−λ) ·min(1.0, d

dmax
).

Data Cost. The best-fragment approach [1] can be written
as M = (m1,m2, ...,mK), where every mi = arg min j w j

i . Here,
the term w j

i is the cost to texture the face Fi with the photo P j.
The term w j

i is also referred to as the data cost. We also include
the term sin2

α into our cost value w j
i , where α is the angle

between the view vector and the corresponding face normal,
and additionally, we also consider the distance between viewer
and face. To keep it simple, we just take a linear combination
of these terms to get our final cost value

w j
i = λ · sin2

α+(1−λ) ·min(1.0,
d

dmax
), (1)

where λ ∈ [0,1] is a scalar value chosen by the user to
emphasize either a perpendicular view or a small distance, and
dmax is the maximum distance between camera position and
surface, such that the weight corresponding to the distance
is clamped to 1.0 for all distances bigger than d. In our
experiments we usually set λ = 0.5 and dmax = 10m. In Figure
2, the exposure scenario is illustrated.

Gal et al. [6] proposed a more complex way to calculate the
data cost. Basically, they take the integral over the gradients
inside the area the triangle is projected into. Their method
incorporates the effect of foreshortening, image resolution, and
blur.

Callieri et al. [15] also proposed a method to calculate the
data cost for a particular photo-triangle-pair. They compute
the quality of image material on a per-pixel basis. For a
particular photo, they compute masks using different metrics.
These masks are then multiplied in order to get a final mask
so that every pixel in the final mask encodes the quality of
the corresponding pixel in the photo. For triangle meshes,
weights are not needed for the pixels of the photos but for
all photo-triangle-pairs. To utilize the masks, the triangles can
be projected into the photos, such that for a particular photo-
triangle-pair the values in the final mask of the photo at the
pixels the triangle is projected onto are considered. Some of
the masks that are computed in the work of Callieri et al. [15]
are:

• Border Mask. Every pixel in the border mask stores
the distance of the pixel to both the image borders
and discontinuities in the depth map. Higher distances
correspond to better image material.

• Focus Mask. In the focus mask, the value of each
pixel is a measure for the focusing. Higher values
correspond to better image material.

• Stencil Mask. Often the user wants to exclude por-
tions of the photos which are then not considered in
the labeling procedure. The stencil masks are provided
by the user and encode the areas that can be used for
texturing.

Fig. 3: Result of the labeling using the best fragment ap-
proach [1]. Every face is textured by the “best” photo, which
leads to many seams.

The methods for calculation of the data cost, which are
based on some kind of integral over the projected area [6],
[15], are more sophisticated than the simple angle-based ap-
proach [1]. Nevertheless, our method is based on the simple
approach [1] since it is easier and faster to calculate. However,
we introduced the concept of stencil masks into our approach
as we will see later.

Smoothness Cost. The best fragment approach [1] does
not take the color differences of the photos into account. As
a result there are many seams in the final texture as shown in
Figure 3.

In order to deal with the seams, we introduce another cost
value. Consider two adjacent faces Fi and Fj of the mesh
sharing an edge Ei j. Given a labeling vector M, the cost
produced by this edge is calculated by:

w
mi,m j
i, j =

∫
Ei j

d(Prmi(X),Prm j(X))dX (2)

In Equation 2, Pri is a projection operator for the photo Pi.
The operator d(., .) returns the distance between two color
samples, where we use the Euclidean distance between RGB
values. The minimum distance between two color samples is
therefore 0.0 if the colors are identical. The maximum distance
is
√

3, corresponding to the distance between a white and a
black pixel in normalized RGB space. The photos are not
continuous functions, so the integral of Equation 2 must be
discretized into the sum of distances between color values
along the projected edge. Certainly, this sum is 0.0 when the
faces Fi and Fj sharing an edge Ei j are textured by the same
photo. The term w

mi,m j
i, j is also referred to as the smoothness

cost.

Let N be the set of adjacent triangle-pairs in a mesh. Then,
the final energy term that has to be minimized can be written

as:

E(M) =
K

∑
i=1

wmi
i +λ ∑

{Fi,Fj}∈N
w

mi,m j
i, j . (3)

The value λ in Equation 3 is typically ≥ 0.0. It defines the
degree of penalizing of edges shared by faces that are textured
by different photos. If 0.0 is chosen, the minimization of
Equation 3 degrades to the best fragment approach, and every
face is textured by the “best” photo. With increasing λ, the
importance of quality of image material used for the faces
decreases, since the whole effort goes into the establishment
of smooth transitions between areas that receive its color
information from different photos. This behavior is illustrated
in Figure 4 on the Centcelles cupola model.

(a) λ = 1.0 (b) λ = 50.0 (c) λ = 100.0

Fig. 4: Impact of the parameter λ on the final texturing result.
Note how the quality of image material per face decreases with
increasing λ, while the transitions become smoother.

In order to (approximately) solve Equation 3, we use the
Graph Cut approach with α-expansion as it was presented by
Boykov et. al [3].

Occlusion Detection. The described labeling approach
gets into difficulties when complex geometry is considered.
The work of Lempitsky and Ivanov [1] just shows results of
nearly convex objects like a statue head and a model of the
earth ball, but in the field of cultural heritage, however, often
far more complex scenes have to be textured. A missing link
in the proposed approach [1] is occlusion detection. Without
occlusion detection, it is possible that wrong image material is
back-projected onto the digitized model. This issue is depicted
in Figure 5 in a simplified fashion.

We base our approach for occlusion detection on depth
maps as they are also used in methods like shadow mapping.
Before the actual labeling procedure begins, a depth map is
created for every photo that is used as a label. Although the
resolution of the depth maps is independent of the resolution
of the photos, we use the resolution of the photos for the
corresponding depth maps. A depth map is simply created by
rendering the model using the extrinsic and intrinsic parame-
ters of the camera, which are usually documented during the
digitization process of a particular monument. We use OpenGL
to create depth maps and store the depths in viewing space
using a single channel float texture.

Let Di be the depth map for the photo Pi. In order to decide
which of the triangles of the model are visible in Pi, they are all
projected into Pi. Not only the texture coordinates the vertices
are projected onto, but also their depths in viewing space are
evaluated. The depths are compared to the sampled values in
the depth map. Only if all values in the depth map are bigger
than the distances of the projected vertices, the particular

object surface

camera

image plane

(a) exposure

reconstructed
object surface

virtual camera

image plane

(b) back-projection

Fig. 5: Incorrectly back-projected image information when no
occlusion detection is carried out. The taken image (a) is back-
projected onto surface areas that to do not correspond to the
image information (b).

triangle is considered as visible in Pi, otherwise it is considered
as occluded. To avoid artifacts, we use an empirically evaluated
threshold of 0.1 (= 10cm) when comparing the values.

Stencil Masks. Similar to the proposed stencil masks [15],
we allow the user of our system to provide masks for the
photos. These masks are basically black-and-white images
providing information about the image material that can be
used in the labeling procedure. Such stencil masks are needed
since the photos often contain regions which are out of focus
or objects that are not part of the model (e.g. persons).

During the labeling procedure, the triangles are projected
into the photos. When a stencil mask is provided for a
particular photo, the area the current triangle is projected onto
is analyzed in the stencil mask. When there is a black pixel
in the area corresponding to “masked out”, the triangle is
considered as “unlabable” by the photo. Only when the entire
region consists of white pixels, the photo can be used as origin
of texture material for the triangle. In Figure 6, a photo of the
Centcelles cupola containing parts of the crane that was used
in the digitization process and the corresponding stencil mask,
in which the crane is masked out, is shown.

(a) photo (b) stencil mask

Fig. 6: Photo of the Centcelles cupola containing image
material that should not be used in the labeling procedure.
Corresponding mask. White regions are shown in grey for
visibility reasons.

Discussion. The output of our approach is a labeled
triangle mesh. The labeling information consists of the map-
ping of triangles onto the set of photos. Furthermore, the
texture coordinates for the projected triangles are provided.
In particular, we generate an OBJ model file in conjunction
with a material file.

In practice there remain seams in the model where regions
that get color information from different photos adjoin. In
Figure 7, those seams are shown for the Centcelles cupola
model that was textured using our application. As already
mentioned, these seams arise because of the different lighting
situations during the exposure of the photos. For a high-quality
model, those seams have to be handled. Because an entirely
manual editing is unacceptable, we will show our automatic
approach for leveling in the next section.

D. Leveling

The result of the labeling procedure described in the
previous section is a labeling vector M that defines a mapping
of the set of triangles of the model onto the set of photos
used for texturing. We now have a set of connected compo-
nents {C1, ...,CT}, where each component consists of a set of
connected triangles that receive their color information from
one particular photo. Assuming that the photos are continuous
functions for each color channel (R, G and B), the mapping
of just one color channel of the photos onto the 3D model
with respect to the labeling vector M results in a piecewise
continuous function f on the mesh M. Only at the edges
where two different components Ci and C j adjoin, there are
points of discontinuity. What we are looking for in the leveling
procedure is a piecewise smooth leveling function g that meets
the two following criteria: (1) The magnitude of the gradients
of the leveling function g is minimal. (2) The jumps of the
leveling function g are equal to the negative jumps of f .

Fig. 7: Remaining seams in the model that was textured using
our labeling approach.

The first one is important to preserve the high frequencies
of the function f . The second one guarantees that the points
of discontinuity are smoothed out at the edges where two
connected components Ci and C j adjoin. For leveling using
photos with three color channels (R, G and B) each channel has
to be calculated separately. In the following, we will describe
the leveling only for a single channel (cf. Fig. 8).

1) Leveling method: Our approach for the leveling process
is based on the method of Lempitsky and Ivanov [1]. They
calculate the leveling function g only at the vertices of the mesh
and then interpolate the function values along the edges and
triangle surfaces. For the explanation of their approach, they
consider the set M containing all the (i, j)-pairs prescribing
that at least one triangle adjacent to the vertex Vi is part of
the connected component C j. For each of these (i, j)-pairs,
the corresponding leveling function value g j

i is computed.

As an example, consider a vertex V1 that is part of three
connected components C1, C2 and C3. By definition, the
connected components are textured by different photos. When
the vertex V1 is projected into these photos, the intensity values
of the pixels V1 is projected into, may differ. These intensity
values define the original texture function f . At V1 we have
therefore three different function values. We define f j

i to be the
original texture function value at the vertex Vi for the connected
component C j. In our example we have therefore the function
values f 1

1 , f 2
1 and f 3

1 at the vertex V1. The differences between
these function values then lead to the point of discontinuity at
V1. So three leveling function values g1

1, g2
1 and g3

1 have to be
calculated at the vertex V1. These different leveling function
values are necessary to smooth out the discontinuities at V1.

We denote L to be the set of (i, j)-pairs prescribing an edge
Ei j formed by the vertices Vi and Vj. Now the leveling function
g, computed at the vertices of the mesh, can be approximated
by the minimization of the following least-squares energy
function:

E = ∑
i1,i2, j

(
g j

i1
−g j

i2

)2
+λ ∑

i, j1, j2

(
g j1

i −g j2
i − (f j2

i − f j1
i)

)2
.

(4)
The first term of 4 approximates the first condition we
demanded of the leveling function g. This condition is the
minimality of the magnitude of the gradients. The first term
corresponds to all the edges Ei1i2 in the mesh whose vertices
Vi1 and Vi2 are part of the same connected component C j. The
second term of 4 approximates the second demanded condition
of the leveling function g. To ensure smooth transitions at the
points of discontinuity, the jumps of g need to be the negative
jumps of f . The second term corresponds to all the vertices
Vi in the mesh, where two connected components C j1 and C j2
adjoin. In practice, we use a large λ (e.g. 100) in order to give
more importance to the second term. In our implementation
we solve the system with the sparse CG solver of the IML++
library [16].

original function f piecewise-smooth g sum of f and g

Fig. 8: Leveling procedure: discontinuities are smoothed out
while at the same time high frequencies are preserved (Figure
based on [1]).

With the proposed method, an adequate leveling function
can be calculated up to an additive constant. This additive
constant can be set to an appropriate value to maintain the
mean gray value of the current color channel. One problem that
we observed with the approach of Lempitsky and Ivanov [1] is
the divergence of the leveled color values: when the procedure
leads to a range for the color values of e.g. [−0.37,1.67], there
is no additive constant that would avoid clamping. In order to
resolve this issue we introduce an additional penalty term to
the equation.

2) Penalized leveling method : Because of the shown
issues, a strategy is necessary to avoid the divergence of the
leveled color values. We decided to adapt the least-squares
problem shown in Equation 4. A disadvantage of this least-
squares problem is the absence of a term that penalizes big
leveling function values. It only places importance on small
differences between adjacent g j

i and small color differences
between adjoining connected components Ci.

Therefore, we introduce a new term into the least-squares
problem such that big leveling function values are penalized:

E = ∑
i1,i2, j

(
g j

i1
−g j

i2

)2
+λ ∑

i, j1, j2

(
g j1

i −g j2
i − (f j2

i − f j1
i)

)2

+µ∑
i, j

(
g j

i

)2
. (5)

This term can not fully avoid that the leveled color values ex-
ceed the valid range, but we observed a much better behavior.
Our adapted least-squares problem is shown in Equation 5.

originally textured model

Lempitsky and Ivanov [1]

our penalized approach

Fig. 9: Comparison of the results of different leveling ap-
proaches (cf. Section III-D2).

We tested the new term extensively in our experiments and
observed that the least-squares system reacts very sensitive to
the parameter µ that controls the contribution of the penalty
term. When a value of 100.0 was chosen for the parameter
λ, a value of 0.01 for µ already brought considerable results.
When the value for µ was chosen too high, the whole leveling
procedure completely failed, and all the g j

i got a value of 0.0.
Nonetheless, when choosing an appropriate µ carefully, the
method delivers significantly better results than the original
approach [1].

Figure 9 shows a comparison on a mesh textured by three
different photos, where the intensity values in each photo
increase from left to right. Note the big loss of contrast on the
left and right side of the model when there is no penalizing of
big values (Figure 9b). In contrast, in our version the seams
are smoothed out while at the same time the contrast of the
overall texture is not lost (Figure 9c).

The reason for the divergence of the color values, as it
is shown in Figure 9b, is the original texture function f . We
observed a diverging behavior when f had nearly the structure

of a sawtooth function (see Figure 9a) so that the image
intensity increases along each of the adjoining connected
components Ci.

E. Rendering

Although some of the input textures can be filtered out
in the labeling step, since they are not needed to completely
cover the model, a labeled and leveled data set of an archaeo-
logical monument often contains a big amount of texture data.
Using a standard approach used by most 3D model viewers
(e.g. Meshlab [17]) leads to bad performance and cluttered
movement through 3D space. This performance drop is caused
by continuously streaming of texture data that does not fit
into the GPU’s memory. However, visualization of the model
at acceptable frame rates is crucial for any post processing
steps that are done manually after the leveling stage. Such
manual texture adaptation is usually done by a graphic artist
in applications like Adobe Photoshop.

Therefore, we introduce virtual texturing into the workflow.
With virtual texturing, only the needed texture parts used for
rendering of the current frame are streamed to the graphics
card. We use the LibVT virtual texturing library [18], which
has been integrated into our visualization application that is
primarily used for visualization of out-of-core point-based and
polygonal data sets. This method uses an atlas which is a
single texture that consists of all the textures that belong to
the virtually textured models in the scene. Texture coordinates
of the virtually textured models have to be altered to reference
the correct positions inside the atlas. The basic element of the
tile store is a so-called tile. These tiles are the atomic elements
that are streamed to the graphics card.

IV. RESULTS AND APPLICATIONS

Our whole pipeline is implemented in C++. We have
used the OpenCV library in the version 2.4.2 for all image
operations. Further we make use of the gco-v3.0 graph cuts
library [3] for the labeling stage, and of the SparseLib++
library in conjunction with IML++ [16] for the leveling stage.

In Figure 10 the results after labeling (left side) and
leveling (right side) are shown for two models. While after
the labeling stage there are still visible seams in the model,
there are no seams in the final result after the leveling stage.
The upper model is the Centcelles cupola in Catalonia which
consists of 1 million triangles and 70 input photos. The
labeling took about 20 minutes, the leveling 8 minutes. The
lower model is the “Hanghaus 2” in Ephesos which consists
of 1.2 million triangles and 90 input photos. The labeling took
about 34 minutes, the leveling 12 minutes. All tests have been
done on a PC with an Intel i7 920 CPU with 2.66 GHz, 6 GB
of RAM and an nVidia 580GTX GPU.

In Figure 11, we show the performance of our imple-
mentation of the atlas and tile store generation. As can be
seen, our implementation is at least 3.6 times faster regarding
the atlas, and about 10 times faster regarding the tile store
generation. This can easily explained, since LibVT [18] calls
a command line based tool (Image Magick) for every single
image that is generated. In contrast, our C++ implementation
holds as much image data as possible in memory to achieve
good performance.

labeling leveling

Fig. 10: Final results after labeling and leveling using our method. Top row shows the cupola in Catalonia, bottom row the
Hanghaus 2 in Ephesos.

7,98
9,79

11,42

19,63

2,2 2,36 2,41 2,78

0

5

10

15

20

25

1 4 16 64

tim
e

ne
ed

ed
 fo

r a
tla

s g
en

er
ati

on
 [s

]
(le

ss
 is

 b
ett

er
)

number of parts of the 8k² atlas

Python script Our implementation

69,63

261,96

1047,18

6,18

23,59

108,21

1,00

10,00

100,00

1000,00

10000,00

8k 16k 32k

tim
e

ne
ed

ed
 fo

r ti
le

 st
or

e
ge

ne
ra
tio

n
[s

]
(le

ss
 is

 b
ett

er
)

atlas side length [px]

Python script Our implementation

Fig. 11: Running-time of LibVT scripts [18] vs. ours.

In Figure 12, we compare our approach to the method
of Lempitsky and Ivanov [1]. Note that there is incorrectly
mapped image material in their results. In contrast, our ap-
proach delivers correct labeling results by the use of stencil
masks and occlusion detection using depth maps.

V. CONCLUSIONS

We presented a full workflow for the post-processing of a
digitized archaeological item. The input of our approach is a
triangle mesh of the model and a set of registered photos. We
showed that we could further improve the results of a proposed
labeling method. We introduced an occlusion detection ap-
proach using depth maps to prevent texturing of surface areas
with image material that does not contain the corresponding

image information. For the automatic adjustment in terms of
colors of the photos used for texturing of the model, we showed
how we could improve a proposed method used for leveling.
We introduced a new term into a least squares problem in order
to prevent the leveled colors to leave the valid range.

There are some situations, where our leveling method can
fail. Since the leveling function is only calculated at the
vertices of the model and linearly interpolated in between, this
can lead to significantly color differences of adjoining triangles
that receive its color information from different photos, also
when the vertexes are perfectly leveled. A solution would be
an adaptive refinement of the mesh at the borders of regions
that are textured by different photos.

An interesting way of labeling was presented by Dellepiane
et al. [19], who calculate the optical flow for surface regions
where projected photos overlap in order to warp these photos
together. A global adaption of the camera registrations, so that
no visible misalignments in the model are the result, is either
very difficult to calculate or even impossible. Therefore, we
think that research in the fields of local photo adaption as it is
done in the mentioned paper [19] in order to compensate for
camera registration errors is the right way to go.

ACKNOWLEDGEMENTS

We want to thank Norbert Zimmermann for providing the
models and Claus Scheiblauer for his assistance concerning the
framework. This work has been partially supported by projects
FFG 825842 - FIT-IT and FWF P23237-N23.

input mesh labeling of [1] our labeling our labeling and leveling

Fig. 12: Top row: Centcelles cupola in Catalonia, bottom row: Hanghaus 2 in Ephesos. Column 2 shows labeling results of
Lempitsky and Ivanov [1]. Note the incorrectly mapped image material in both cases. Column 3 shows our labeling result that
avoids mapping of incorrect image material. Last column shows our final result after labeling and leveling.

REFERENCES

[1] V. Lempitsky and D. Ivanov, “Seamless mosaicing of image-based
texture maps,” in Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, june 2007, pp. 1–6.

[2] S. Z. Li, Markov random field modeling in computer vision. London,
UK: Springer-Verlag, 1995.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 23, no. 11, pp. 1222 –1239, nov 2001.

[4] V. Kolmogorov and R. Zabih, “What energy functions can be
minimized via graph cuts?” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 2, pp. 147–59, Feb. 2004.

[5] A. Abdelhafiz, “Integrating digital photogrammetry and terrestrial
laser scanning,” Ph.D. dissertation, Technical University Braunschweig,
2009.

[6] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or, “Seamless
montage for texturing models.” Comput. Graph. Forum, pp. 479–486,
2010.

[7] P. Musialski, C. Luksch, M. Schwärzler, M. Buchetics, S. Maierhofer,
and W. Purgathofer, “Interactive multi-view façade image editing,” in
Vision, Modeling and Visualization Workshop 2010, Nov. 2010.

[8] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM
SIGGRAPH 2003 Papers, ser. SIGGRAPH ’03. New York, NY, USA:
ACM, 2003, pp. 313–318.

[9] R. Pintus, E. Gobbetti, and M. Callieri, “A streaming framework
for seamless detailed photo blending on massive point clouds,”
in Proceedings of Eurographics Conference - Cultural Heritage
Papers, ser. 32nd Eurographics Conference, Llandudno, Wales, UK,
Eurographics. Wiley-Blackwell, April 2011.

[10] D. L. Milgram, “Computer methods for creating photomosaics,” IEEE
Trans. Computers, vol. 24, no. 11, pp. 1113–1119, 1975.

[11] A. A. Efros and W. T. Freeman, “Image Quilting for Texture Synthesis
and Transfer,” in SIGGRAPH 2001, Computer Graphics Proceedings,
E. Fiume, Ed. ACM Press / ACM SIGGRAPH, 2001, pp. 341–346.

[12] J. Davis, “Mosaics of scenes with moving objects,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, ser. CVPR ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 354–.

[13] M. Uyttendaele, A. Eden, and R. Szeliski, “Eliminating ghosting and
exposure artifacts in image mosaics.” in CVPR (2). IEEE Computer
Society, 2001, pp. 509–516.

[14] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Multilevel
streaming for out-of-core surface reconstruction,” in Proceedings of the
fifth Eurographics symposium on Geometry processing, ser. SGP ’07.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association,
2007, pp. 69–78.

[15] M. Callieri, P. Cignoni, M. Corsini, and R. Scopigno, “Masked photo
blending: Mapping dense photographic data set on high-resolution
sampled 3d models.” Computers & Graphics, vol. 32, no. 3, pp. 464–
473, 2008.

[16] J. Dongarra, A. Lumsdaine, X. Niu, R. Pozo, and K. Remington,
“Sparse matrix libraries in c++ for high performance architectures,”
1994.

[17] P. Cignoni, M. Corsini, and G. Ranzuglia, MeshLab: an open-source
3D mesh processing system, Apr. 2008.

[18] A. J. Mayer, “Virtual texturing,” Master’s thesis, Institute of
Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, Oct. 2010.

[19] M. Dellepiane, R. Marroquim, M. Callieri, P. Cignoni, and R. Scopigno,
“Flow-based local optimization for image-to-geometry projection,”
IEEE Transactions on Visualization and Computer Graphics, vol. 18,
pp. 463–474, 2012.

